Does a Multi-Model Ensemble Enhance Skill?

Timothy DelSole

George Mason University, Fairfax, Va and Center for Ocean-Land-Atmosphere Studies, Calverton, MD

October 22, 2013

Question about the NMME

Is the skill of a combined forecast significantly higher than that of a single forecast?

Compare Mean Square Error?

Root Mean Square Error SSTA 20S-20N, Sept. Starts, 1982-2009

Kirtman et al. 2013: The North American Multi-Model Ensemble... BAMS

Assertion

A rigorous test for the difference in MSEs does not exist when

- ▶ MSEs are calculated from the same verification.
- ▶ the prediction models are not nested.

Assertion

A rigorous test for the difference in MSEs does not exist when

- MSEs are calculated from the same verification.
- ▶ the prediction models are not nested.

Corollary: Confidence intervals cannot be attached to MSE to rigorously test differences in MSE.

Statement of the Question

o: observations

f: forecast from a model

c: combination of forecasts excluding f.

▶ The skill of a forecast *f* can be measured by correlation:

$$\rho = \operatorname{cor}\left[o, f\right]$$

► The skill of the best linear combination of *f* and *c* can be measured by the *multiple correlation*

$$R = \max_{\beta_f, \beta_c} \operatorname{cor}\left[o, \beta_f f + \beta_c c\right]$$

Statement of the Question

o: observations

f: forecast from a model

c: combination of forecasts excluding f.

▶ The skill of a forecast *f* can be measured by correlation:

$$\rho = \operatorname{cor}\left[o, f\right]$$

► The skill of the best linear combination of f and c can be measured by the *multiple correlation*

$$R = \max_{\beta_f, \beta_c} \operatorname{cor} \left[o, \beta_f f + \beta_c c \right]$$

Question: Is $R > \rho$?

Statistical Test

$$\rho = \max_{\beta_f} \operatorname{cor} \left[o, \beta_f f \right]$$

$$R = \max_{\beta_f, \beta_c} \operatorname{cor} \left[o, \beta_f f + \beta_c c \right]$$

- ▶ The hypothesis $R = \rho$ is equivalent to the hypothesis $\beta_c = 0$.
- lacktriangle Testing the hypothesis $eta_c=0$ is standard and is based on

$$t = \frac{\hat{\beta}_c}{se_c}$$

It can be shown that

$$t^{2} = \frac{R^{2} - \rho^{2}}{1 - R^{2}} \frac{N - 3}{1} = \frac{SSE_{R} - SSE_{F}}{SSE_{F}} \frac{N - 3}{1}$$

Equivalent Interpretation of the Test

A significant t-value means: if the forecast f is regressed out of c, the residual c still has skill.

Combined Forecast

- We consider only equal weighting schemes.
- Equal weights is very competitive with more sophisticated schemes
 - ▶ Kharin and Zwiers, 2002, J. Climate
 - ► Hagedorn et al. 2005, *Tellus A*
 - ▶ Weigel et al. 2010, J. Climate
 - ▶ DelSole et al. 2012, J. Climate
 - ▶ Sansom et al. 2013, J. Climate

North American Multi-Model Ensemble

- ▶ Hindcasts initialized every month from 1982-2009
- At least 6 month lead
- ► Analyze NINO3.4
- Verification: OISST

model	ensemble size
CMC1-CanCM3	10
CMC2-CanCM4	10
COLA-RSMAS-CCSM3	6
GFDL-CM2p1	10
NASA-GMAO	10
NCEP-CFSv1	10
NCEP-CFSv2	10

14 / 16

15 / 16

Summary

- 1. Proposed an objective procedure for deciding if the skill of a combined forecast is significantly higher than a single forecast.
- 2. Skill of each model in NMME is significantly enhanced by combining it with other models, at least for some lead time and target month.